
2.1 From Tables to 

Logistic Regression Models



Regression Analysis

Specifically, what can we say about Y if we know X?

1. Is there a relationship between variables X and Y?

2. How does Y change if X changes?

3. What is the best guess for Y for a given value of X?

4. …

5. …
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Analysis of how one or more independent variables, X, 

impact the value of a dependent variable Y



Different types of outcome variables

Outcome (Y) Regression model

Continuous Linear regression

Binary Logistic regression

Count/rate Poisson regression

Time Cox regression
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For binary outcome 𝑌 (yes=1, no= 0), 

linear model unreasonable (as 𝑌 has only 2 values)

0

1

𝑌 𝐸(𝑌) = 𝛼 + 𝛽𝑋

𝑋

continuous outcome

binary outcome 

For a continuous outcome 𝑌 and an exposure 𝑋

Common model: 𝑌 = 𝛼 + 𝛽𝑋 + 𝜀 (linear regression)



5

For binary outcome 𝑌 (yes=1, no= 0),

model the probability that 𝑌=1 for a given 𝑋 as: 

𝑃[𝑌 = 1|𝑋] =
𝑒𝑥𝑝𝛼+𝛽𝑋

1 + 𝑒𝑥𝑝𝛼+𝛽𝑋

Logistic

regression 

model0

1

𝑌

𝑋

For a continuous outcome 𝑌 and an exposure 𝑋

Common model: 𝑌 = 𝛼 + 𝛽𝑋 + 𝜀 (linear regression)
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Model 𝑃[𝑌 = 1|𝑋] as 𝑃[𝑌 = 1] =
𝑒𝑥𝑝𝛼+𝛽𝑋

1+𝑒𝑥𝑝𝛼+𝛽𝑋
(logistic regression):

Odds(𝑌 = 1) = 𝑒𝑥𝑝𝛼+𝛽𝑋

loge (Odds) = 𝛼 + 𝛽𝑋

loge (Odds) also called:

log-odds, ln(odds), 

logit of 𝑃[𝑌 = 1]

The ln(odds) is linearly related to 𝑋
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𝑃[𝑌 = 1]

Range:

𝑃[𝑌 = 1] = 0 →  odds = 0

𝑃[𝑌 = 1] = 0.5 →  odds = 1

𝑃[𝑌 = 1] = 1 →  odds = infinity

Logistic regression

Binary outcome (𝒀: yes=1, no= 0)



7

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40

X

a b

- 4
- 8

- 12
- 20

0.4
0.4
0.6
1.0

𝑃[𝑌 = 1] =
𝑒𝑥𝑝𝛼+𝛽𝑋

1 + 𝑒𝑥𝑝𝛼+𝛽𝑋

𝑃
[𝑌

=
1
]

A logistic model of the probability of the outcome for 

different 𝑋 values is a very flexible (sigmoidal) curve:



Logistic regression analysis finds the 𝜶 and 𝜷
of the curve that ”best fits” the data 
(method: ”maximum likelihood”)
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Observations with (𝑌 = 1) and without the outcome (𝑌 = 0) cannot be 

separated by 𝑋 would have a small value of 𝛽
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Observations with (𝑌 = 1) and without the outcome (𝑌 = 0) are clearly 

separated by 𝑋 (see dotted red line) would have a large value of 𝛽
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The logistic model assumes

Prob (outcome) =
𝑒𝑥𝑝𝛼+𝛽𝑋

1+𝑒𝑥𝑝𝛼+𝛽𝑋

i.e., odds (outcome)= 𝑒𝑥𝑝𝛼+𝛽𝑋

If 𝑋 = 1: odds1 = 𝑒𝑥𝑝𝛼+𝛽

If 𝑋 = 0: odds0 =  𝑒𝑥𝑝𝛼

odds1/odds0 = OR = 
𝑒𝑥𝑝𝛼+𝛽

𝑒𝑥𝑝𝛼
= 𝑒𝑥𝑝𝛽

𝛽 = loge of the OR
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Simplest case, binary 𝑿
If 𝑿 = 𝟏 (exposed), 𝟎 (unexposed)
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ln(odds) (Y=1) odds (Y=1)

OR (level 1 vs. level 0) =
𝑒𝑥𝑝𝛼+𝜷𝟏

𝑒𝑥𝑝𝛼
= 𝑒𝑥𝑝𝜷𝟏

OR (level i vs. j)            = 𝑒𝑥𝑝𝜷𝒊
−𝜷

𝒋

Note that the 𝛽 associated with level 0 (i.e., reference group) is 0, or 𝛽0 = 0. 

Exposure with more than 2 levels



If we have a continuous 𝑋 in a logistic model, this assumes

odds (outcome) = 𝑒𝑥𝑝𝛼+𝛽𝑋

or the loge(odds) = 𝛼 + 𝛽𝑋

i.e. the log odds is linearly related to 𝑋

𝛽 = change in log Odds per unit change in 𝑋

𝑒𝑥𝑝𝛽 = OR for unit change in X.

Also: For a change of 2 units OR = 𝑒𝑥𝑝𝟐𝛽

For a change of k units OR = 𝑒𝑥𝑝𝒌𝛽

Interpretation is simple, 

But we should first check if the linear assumption is reasonable
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Continuous 𝑿 in a logistic model
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Assuming a common OR relating Y to X in each stratum (e.g. for 3 strata)

Different 𝛼 allows the odds to be different in each stratum, but 

same 𝛽 represents same OR for 𝑋 = 1 vs. 𝑋 = 0 regardless of

stratum

Fit logistic model with 𝑋 and a 3-category stratum variable as 

predictors: 𝑒𝑥𝑝𝛽 estimate is the Mantel-Haenszel OR!

ln(Odds) for stratum 1: 𝛼1 + 𝛽𝑋
ln(Odds) for stratum 2: 𝛼2 + 𝛽𝑋
ln(Odds) for stratum 3: 𝛼3 + 𝛽𝑋

Adjusted OR from logistic regression
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In logistic regression, with binary exposure 𝑋 and binary confounder 𝑍,  

we include both as predictors to model:

logit(𝑃[𝑌 = 1]) = 𝛼 + 𝛽1𝑋 + 𝛽2𝑍 + 𝜸𝑋 ∗ 𝑍

𝑋 𝑍 odds                   OR*

0 0 𝑒𝑥𝑝𝛼 OR00=1= 𝑒𝑥𝑝𝛼/𝑒𝑥𝑝𝛼

1 0 𝑒𝑥𝑝𝛼+𝛽1 OR10= 𝑒𝑥𝑝𝛽1

0 1 𝑒𝑥𝑝𝛼+𝛽2 OR01= 𝑒𝑥𝑝𝛽2

1 1 𝑒𝑥𝑝𝛼+𝛽1+𝛽2+𝛾 OR11= 𝑒𝑥𝑝𝛽1+𝛽2+𝛾

When 𝜸=0 (no effect modification) ORX=1 vs. 0=𝑒𝑥𝑝
𝛽1for all 𝑍

*: Reference group corresponds to 𝑋 = 0 and 𝑍 = 0

To assess effect modification
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Reasonable to fit alcohol as continuous
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Recall: ln(odds) is linearly related to 𝑋 in 

logistic model



We classify the variable into categories/levels, and choose one of 

them as the “reference” and fit the effect of different levels as before:

log-odds = 𝛼 for level 0 

= 𝛼 + 𝛽1 for level 1

= …. ……

= 𝛼 + 𝛽𝐾 for level K

This means we are modelling a different odds for each level (and not 

assuming that they follow a linear trend)

The 𝑒𝑥𝑝𝛽 values from the logistic regression are the ORs of each of 

the levels vs. the reference

Note: You must tell your software that the variable is a factor !
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If assumption of a linear trend is not

reasonable



Especially age groups

Even where there may be a linear trend!

(easier to communicate: OR of level=j vs. reference group)

BUT:

Where a linear trend is reasonable, and we only wish to adjust for 

the factor (i.e., we are not interested in the magnitude of its effect) 

Then: model with linear trend has greater statistical power, 

especially if some categories have a small number of individuals.
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Categorization very common in medical 

research



𝑃 is probability of disease (proportion with disease)

𝑠𝑒𝑥 is coded 0 for M, 1 for F

𝑎𝑔𝑒 in years (continuous)

OR for F vs M for disease is 𝑒𝑥𝑝𝛽2 if both are the same age

Note this assumes there is a common odds ratio in all age strata

(For categorical exposure and confounder, this is the MH odds ratio!)

𝑒𝑥𝑝𝛽1 is odds ratio per one year increase in age 

(assuming this is common for males and female)

𝑒𝑥𝑝𝛽1
𝑘
= 𝑒𝑥𝑝𝑘𝛽1 is the OR for a change in age of  ‘𝑘’ years

for individuals of the same sex.

logit(𝑃) = 𝛼 + 𝛽1𝑎𝑔𝑒 + 𝛽2𝑠𝑒𝑥

Example of interpreting β coefficients
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May have many explanatory variables, both exposure(s) and 
confounders (maybe frequency matched):

So odds = 𝑒𝑥𝑝𝛼 𝑒𝑥𝑝𝛽1 𝑒𝑥𝑝𝛽2 … 𝑒𝑥𝑝𝛽𝑘

= (base odds) OR1 OR2 … ORk

Model is multiplicative on the odds scale

ln odds = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑘𝑋𝑘

More general logistic model
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For cohort or cross-sectional data, logistic model is a ”regression 

model” for binary outcomes in the sense that 𝑋’s can be 

fixed/chosen but 𝑌 random:

logit(𝑃[𝑌 = 1]) = 𝛼 + 𝛽𝑋

Equivalent to 𝑃[𝑌 = 1] =
𝑒𝛼+𝛽𝑋

1+𝑒𝛼+𝛽𝑋

𝑃[𝑌 = 1] when 𝑋 = 0 (unexposed) = 
𝑒𝛼

1+𝑒𝛼

So we can estimate prevalence (in unexposed) from 𝛼
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But for case-control data, we are modeling

𝑃[𝑌 = 1|𝑋] conditional on being sampled

From prospective to retrospective
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Then using Bayes theorem:

P[𝑌 = 1|𝑋, 𝑆 = 1] = 
𝑃[𝑌=1,𝑆=1,𝑋]

𝑃[𝑆=1,𝑋]

If probability of being sampled is 𝜋1 for cases and 𝜋0 for controls

where  𝛼∗ = 𝛼 + ln
𝜋1

𝜋0
=

𝑒𝛼
∗+𝛽𝑋

1 + 𝑒𝛼
∗+𝛽𝑋

=
𝑃 𝑋 𝑃 𝑌 = 1 𝑋 𝑃[𝑆 = 1 ∣ 𝑋, 𝑌 = 1]

𝑃 𝑋 𝑃 𝑌 = 1 𝑋 𝑃[𝑆 = 1 ∣ 𝑋, 𝑌 = 1] + 𝑃[𝑋] 𝑃[𝑌 = 0 ∣ 𝑋]𝑃[𝑆 = 1 ∣ 𝑋, 𝑌 = 0]

=
𝑃[𝑌 = 1 ∣ 𝑋]𝜋1

𝑃[𝑌 = 1 ∣ 𝑋]𝜋1 + 𝑃[𝑌 = 0 ∣ 𝑋]𝜋0

From prospective to retrospective



We know that using 2-by-2 tables the exact same calculations can 

be used to make inferences on OR from cohort or case-control data.
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Now, we see that when

logit 𝑃(𝑌 = 1) = 𝛼 + 𝛽𝑋
►logit 𝑃(𝑌 = 1|𝑋, 𝑆 = 1) = 𝛼∗ + 𝛽𝑋

𝛼∗ = 𝛼 + ln
𝜋1

𝜋0
where 𝜋1 and 𝜋0 are sampling fractions of cases and controls

If we have whole cohort, then 𝛼∗ = 𝛼

Prentice & Pyke (1979, Biometrika): same 𝛽, 𝛼 different  

From prospective to retrospective



Used in cohort studies as well as case-control studies

Logistic regression widely used and adjusted ORs reported

The reported OR often referred to as ”relative risk”: it is a good

approximation in many settings when prevalence is low

It is possible to estimate adjusted RR (later in this course)
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So OR has nice properties


